AP Stats – Chap 22 (the fun "algebra" part)

FLASHBACK...

When we were using a Normal Model (z-scores) and we were looking for the sample size, we knew the Margin of Error, the z* value, and the \hat{p} and \hat{q} , we used the formula:

$$\mathsf{ME} = \left(\mathsf{z}^*\right) \left(\sqrt{\frac{\hat{\mathsf{pq}}}{\mathsf{n}}}\right)$$

The **critical values** that we used for z* were...

90% = 1.645 95% = 1.96 98% = 2.326 99% = 2.58

What if we had wanted to know a critical value for a different confidence percentage?

Say, 92%...

invNorm(.96

DIST

3:invNorm

invNorm(.96 1.750686071 1.75 is the z* critical value for 92%.

NOW...

We're using a t-model, so the formula will be:

$$\mathsf{ME} = \left(\mathsf{t}_{df}^*\right) \left(\frac{\mathsf{s}}{\sqrt{\mathsf{n}}}\right)$$

But how do we find the (t_{df}^{*}) value?

It depends on the confidence percentage we want and the **degrees of freedom** in the question.

The **degrees of freedom** value is 1 less than the interval we're looking for.

If we wish to conduct another trial, how many batteries must we test to be 95% sure of estimating the mean lifespan to within 15 minutes?

4:invT(

DIST

invT(.975,14	

4:invT(cut-off point on curve, df)

invT(.975,14 2.144786681

2.14 is the t_{df}^{*} critical value we need.

IF YOU HAVE A	TI-83
EDIT CALC Missie 2↑T-Test…	STAT,
3:2-SampZTest 4:2-SampTTest 5:1-PropZTest 6:2-PropZTest 7:ZInterval 3!! TInterval	8:TIn

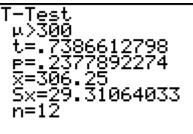
STAT, TEST

8:TInterval

TInterval Inpt:Data Sisis X:0
Sx:J(15 n:15
C-Level:.95 Calculate

Stats

TInterval (-2.145,2.1448) **⊼=**0 .872983346 n=15


2.14 is the t_{df}^* critical value we need.

NOW SOLVE THE QUESTION

$$ME = \left(t_{df}^*\right) \left(\frac{s}{\sqrt{n}}\right)$$

$$15 = (2.14) \left(\frac{29.31}{\sqrt{n}}\right)$$

this is the SD calculated from the original data (in the Mechanics section)

$$7.01 = \left(\frac{29.31}{\sqrt{n}}\right)$$

$$\sqrt{n} = \left(\frac{29.31}{7.01}\right)$$

 $\sqrt{n} = 4.18$

$$n = 17.47$$

Approximately 18 batteries are needed.

If we wish to conduct another trial, how many batteries must we test to be 95% sure of estimating the mean lifespan to within 5 minutes?