

- published On the Revolutions of the Celestial Spheres (1543)
- first modern astronomer to suggest the heliocentric view of the solar system

Tycho Brahe

- carefully recorded the exact positions of the planets
concluded that the Sun and the Moon orbit Earth, and other planets orbit the Sun

7.1 Planetary Motion and Gravitation
(b) The Harmony of the Worlds
Although an excellent mathematician, Kepler was
also a mystic, and he indulged freely in wild specu-
lation and the occult. In his endeavor to find an
underlying harmony in nature, he constantly
searched for numerological relations in the celestial
realm. It was a great personal triumph, therefore,
that he found a simple algebraic relation between
the lengths of the semimajor axes of the planets'
orbits and their sidereal periods. Because planetary
7.1 Planetary Motion and Gravitation

Kepler's Laws
Kepler's Third Law - the square of the ratio of the periods of any two planets revolving about the Sun is equal to the cube of the ratio of their average distances from the Sun

$$
\left(\frac{T_{A}}{T_{B}}\right)^{2}=\left(\frac{r_{A}}{r_{B}}\right)^{3}
$$

- this law relates the motion of several objects around a single body
- the other two laws can apply to a planet, moon, or satellite individually

7.1 Planetary Motion and Gravitation
Newton related the law of universal gravitation to Kepler's
third law:
For a planet orbiting the sun: $F_{n e t}=\frac{m_{p} v^{2}}{r}$ and $\left(v=\frac{2 \pi r}{T}\right)$
So, $\quad F_{\text {net }}=\frac{m_{p} 4 \pi^{2} r}{T^{2}}$
The force on the planet is due to the gravitational force between it and
the Sun:

$$
G \frac{m_{s} m_{p}}{r^{2}}=\frac{m_{p} 4 \pi^{2} r}{T^{2}}
$$

Solving for T2: $T^{2}=\left(\frac{4 \pi^{2}}{G m_{s}}\right) r^{3}$
For all planets orbiting the Sun $\frac{T^{2}}{r^{3}}$ is constant (Kepler's 3rd Law)

$$
\begin{aligned}
& \text { 7.1 Planetary Motion and Gravitation } \\
& \text { Determining the mass of the Earth: } \\
& \text { The weight of an object is a measure of Earth's gravitational attraction } \\
& \qquad F_{g}=m g \\
& \text { That force of attraction can also be represented as } F_{g}=G \frac{m_{E} m}{r_{E}{ }^{2}} \\
& \text { Setting the two values equal } / 1 g=G \frac{m_{E}}{r_{E}{ }^{2}} \\
& \text { Solving for the mass of the Earth } m_{E}=\frac{g r_{E}{ }^{2}}{G} \\
& \qquad m_{E}=\frac{\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)\left(6.38 \times 10^{6} \mathrm{~m}\right)^{2}}{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}{ }^{2}\right)}=5.98 \times 10^{24} \mathrm{~kg}
\end{aligned}
$$

At which point in the orbit is the Earth moving the fastest? If $\mathrm{t}_{1}=\mathrm{t}_{2}$, how does Area ${\text {, compare to } \text { Area }_{2} \text { ? }}^{\text {? }}$

7.1 Planetary Motion and Gravitation				
Planet	Minium Distance from Sun $(k m)$	Maxium Distance from Sun (km)	Average Distance from Sun (km)	Period (Earth Years)
Mercury	4.608×10^{7}	6.982×10^{7}	5.791×10^{7}	0.241
Venus	1.075×10^{8}	1.089×10^{8}	1.082×10^{8}	0.615
Earth	1.471×10^{8}	1.521×10^{8}	1.496×10^{8}	1.000
Mars	2.066×10^{8}	2.492×10^{8}	2.279×10^{8}	1.881
Jupiter	7.405×10^{8}	8.166×10^{8}	7.786×10^{8}	11.860
Saturn	1.353×10^{9}	1.515×0^{9}	1.434×10^{9}	29.420
UUanus	2.741×10^{9}	3.004×10^{9}	2.872×10^{9}	84.010
Neptune	4.444×10^{9}	4.546×10^{9}	4.495×10^{9}	164.790
Pluto	4.435×10^{9}	7.304×10^{9}	5.870×10^{9}	247.680

Do the data for Mercury and Jupiter agree with Kepler's 3rd Law?

The newly discovered Kuiper Belt object, Quaoar, revolves around the Sun at a distance of about $7.5 \times 10^{12} \mathrm{~m}$. What is Quaoar's period?

The Moon revolves around Earth with a period of 27.32 days. Using Kepler's third law, calculate its distance from Earth?

7.1 Planetary Motion and Gravitation

Having recently completed a first Physics course, a student has devised a new business plan. He learned that objects weigh different amounts at different distances from Earth's center. His plan involves buying gold by the weight at one altitude and then selling it at another altitude at the same price per weight. Should he buy at a high altitude and sell at a low altitude or vice versa?

Which of the following is true according to Kepler's first law?
A. Paths of planets are ellipses with Sun at one focus.
B. Any object with mass has a field around it.
C. There is a force of attraction between two objects.
D. Force between two objects is proportional to their masses.

7.2 Using the Law of Universal Gravitation
A satellite in orbit experiences a centripetal force $F_{n e t}=\frac{m_{s a t} v^{2}}{r}$
The $\mathrm{F}_{\text {net }}$ equals $G \frac{m_{s a t} m_{E}}{r^{2}}$

$$
{ }_{G} \frac{\eta / s a t m_{E}}{r^{2}}=\frac{m / s a t v^{2}}{r}
$$

Speed of a Satellite Orbiting the Earth

$$
v=\sqrt{\frac{G m_{E}}{r}}
$$

Not dependent on the mass of the satellite

$$
r=\text { orbital radius (radius of Earth }+ \text { height of satellite) }
$$

$m_{E}=$ mass of the Earth
Have to be about 150 km above Earth to avoid air resistance

7.2 Using the Law of Universal Gravitation

Assume that a satellite orbits Earth 225 km above its surface. Given that the mass of Earth is $5.97 \times 10^{24} \mathrm{~kg}$ and the radius of Earth is $6.38 \times 10^{6} \mathrm{~m}$, what are the satellite's orbital speed and period?

7.2 Using the Law of Universal Gravitation

Period of a Satellite Orbiting the Earth

$$
T=2 \pi \sqrt{\frac{r^{3}}{G m_{E}}}
$$

$r=$ orbital radius
$\mathrm{m}_{\mathrm{E}}=$ mass of the Earth
(same equation as for the Earth orbiting the Sun)

Section
 7.2

The Gravitational Field

- Gravity acts over a distance.
- (In the $19^{\text {th }}$ century, Michael Faraday developed the concept of a field to explain how a magnet attracts objects. Later, the field concept was applied to gravity.)
- Any object with mass is surrounded by a gravitational field in which another object experiences a force due to the interaction between its mass and the gravitational field
- A gravitational field is denoted g

Section
 7.2

Weight and Weightlessness

- Astronauts in a space shuttle are in an environment often called "zero-g" or "weightlessness."
- The shuttle orbits about 400 km above Earth's surface. At that distance, $g=8.7 \mathrm{~m} / \mathrm{s}^{2}$, only slightly less than on Earth's surface. Thus, Earth's gravitational force is certainly not zero in the shuttle.
-To find the gravitational field caused by more than one object, you would calculate both gravitational fields and add them as vectors.

The gravitational field can be measured by placing an object with a small mass, m, in the gravitational field and measuring the force, F, on it

- The gravitational field can be calculated using $g=F / m$.
- The gravitational field is measured in N / kg, which is also equal to $\mathrm{m} / \mathrm{s}^{2}$

7.2 Using the Law of Universal Gravitation

Acceleration due to gravity:
For a freely falling object $F=G \frac{m_{E} m}{r^{2}}=m a$
So, $a=G \frac{m_{E}}{r^{2}} \bigsqcup \quad$ we found before that $m_{E}=\frac{g r_{E}^{2}}{G}$

$$
a=g\left(\frac{r_{E}}{r}\right)^{2}
$$

(this tells us that the acceleration due to gravity an object has varies with its distance from Earth)

Section

5.2

The Gravitational Field

- On Earth's surface, the strength of the gravitational field is 9.80 N / kg, and its direction is toward Earth's center. The field can be represented by a vector of length g pointing toward the center of the object producing the field.
- The strength of the field varies inversely with the square of the distance from the center of Earth.
- The gravitational field depends on Earth's mass, but not on the mass of the object experiencing

it.
You can picture the gravitational field of Earth as a collection of vectors surrounding Earth and pointing toward it, as shown in the figure.

Two Kinds of Mass

- Mass related to the inertia of an object is called inertial mass

$$
m_{\text {nerital }}=\frac{F_{\text {net }}}{a}
$$

- Mass as used in the law of universal gravitation determines the size of the gravitational force between two objects and is called gravitational mass. 1

$$
m_{\text {grav }}=\frac{r^{2} F_{\text {grav }}}{G m}
$$

Section
 7.2

Two Kinds of Mass

- Newton made the claim that inertial mass and gravitational mass are equal in magnitude. This hypothesis is called the Principle Of Equivalence. All experiments conducted so far have yielded data that support this principle. Albert Einstein also was intrigued by the principle of equivalence and made it a central point in his theory of gravity.

7.2 Using the Law of Universal Gravitation

7.2 Using the Law of Universal Gravitation

