4.4 Trigonometric Functions of Any Angle

Definitions of Trig Functions at Any Angle

Let θ be an angle in standard position with (x, y) being a point on the terminal side of θ, and $r=\sqrt{x^{2}+y^{2}} \neq 0$

$$
\begin{array}{ll}
\sin \theta=\frac{y}{r} & \cos =\frac{x}{r} \\
\tan \theta=\frac{y}{x}, x \neq 0 & \cot \theta=\frac{x}{y}, y \neq 0 \\
\sec \theta=\frac{r}{x}, x \neq 0 & \csc \theta=\frac{r}{y}, y \neq 0
\end{array}
$$

$$
\text { Since }=\sqrt{x^{2}+y^{2}} \text { cant be zero, }
$$ sine and cosine are DEFINED for any real value of θ

Reference Angles

Let θ be an angle in standard position. Its reference angle is the acute angle, denoted θ^{\prime}, that's formed by the terminal side of θ and the horizontal (x) axis.

