Chapter 3: Exponential and Logarithmic Functions

These functions are examples of transcendental functions. Until now, we have been dealing with algebraic functions.

Section 1: Exponential Functions

Definition of Exponential Function

The exponential function f with base a is denoted by

$$f(x) = a^{x}$$

Where a > 0, $a \neq 1$, and x is any real number.

- Domain: $(-\infty,\infty)$
- Range: $(0,\infty)$
- Intercept: (0,1)
- x-axis is horizontal asymptote $(a^x \rightarrow 0 \quad as \quad x \rightarrow -\infty)$
- Continuous

Transformations of Graphs of Exponential Functions

Horizontal Translations

 $y = a^{x-c}$ graph shifts to the right

 $y = a^{x+c}$ graph shifts to the left

Vertical Translations

 $y = a^{x} + c$ graph shifts up

 $y = a^x - c$ graph shifts down

Axis flips

 $y = a^{-x}$ graph flips over the *y* axis

 $y = -a^x$ graph flips over the *x* axis

One-to-One Property

For a > 0 and $a \neq 1$, $a^x = a^y$ if and only if x = y.

<u>The Natural Base e</u>

- *e* is an irrational number
- $e \approx 2.718281828 \dots$
- This number is called the *natural base*.
- The function given by $f(x) = e^x$ is called the *natural exponential function*.

•
$$y_1 = \left(1 + \frac{1}{x}\right)^x$$
 as $x \to \infty$ is the same as $y_2 = e$

Applications

Formulas for Compounded Interest

After t years, the balance A in an account with principal P and annual interest rate r (in decimal form) is given by the following formulas.

- 1. For *n* compoundings per year: $A = P\left(1 + \frac{r}{n}\right)^{nt}$
- 2. For continuous compounding: $A = Pe^{rt}$