Chapter 3: Exponential and Logarithmic Functions

These functions are examples of transcendental functions. Until now, we have been dealing with algebraic functions.

Section 1: Exponential Functions

Definition of Exponential Function

The exponential function f with base a is denoted by

$$
f(x)=a^{x}
$$

Where $a>0, a \neq 1$, and x is any real number.

- Domain: $(-\infty, \infty)$
- Range: $(0, \infty)$
- Intercept: $(0,1)$
- x-axis is horizontal asymptote $\left(a^{x} \rightarrow 0\right.$ as $\left.x \rightarrow-\infty\right)$
- Continuous

Transformations of Graphs of Exponential Functions

Horizontal Translations

$y=a^{x-c}$ graph shifts to the right
$y=a^{x+c}$ graph shifts to the left

Vertical Translations
$y=a^{x}+c$ graph shifts up
$y=a^{x}-c$ graph shifts down

Axis flips
$y=a^{-x}$ graph flips over the y axis
$y=-a^{x}$ graph flips over the x axis

One-to-One Property

For $a>0$ and $a \neq 1, a^{x}=a^{y}$ if and only if $x=y$.

The Natural Base e

- $\quad e$ is an irrational number
- $e \approx 2.718281828$...
- This number is called the natural base.
- The function given by $f(x)=e^{x}$ is called the natural exponential function.
- $y_{1}=\left(1+\frac{1}{x}\right)^{x}$ as $x \rightarrow \infty$ is the same as $y_{2}=e$

Applications

Formulas for Compounded Interest
After t years, the balance A in an account with principal P and annual interest rate r (in decimal form) is given by the following formulas.

1. For n compoundings per year: $A=P\left(1+\frac{r}{n}\right)^{n t}$
2. For continuous compounding: $A=P e^{r t}$
