Orgennic Chemistry

- \qquad Organic Compounds
* compounds that contain \qquad
\qquad of all compounds
* originally associated with \qquad now most are
\qquad
* Reasons for so many types:
- Carbon can form \qquad bonds to different atoms because it has \qquad
valence e- and needs \qquad more for stability
- It can form \qquad
- Can have a large number of \qquad in one compound
- C can form:

* Carbon bonds with many different elements: \qquad
- _ - have benzene rings
- _ all others (2 kinds: \qquad and ——)

- all \qquad bonds
- ___complex
- $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2} \sim$ where $\mathrm{n}=$ \qquad
- methane - \qquad
- ethane- \qquad
- propane - \qquad
- butane - \qquad
- pentane - \qquad
- hexane-
- heptane- \qquad
- octane - \qquad
- nonane-
- decane-

```
\ggg ⿱ 一 𫝀 口 \ ~ ( — ) ~ )
o one or more
```

\qquad

``` bonds
－ \(\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}} \sim\) where \(\mathrm{n}=\)
－ethene－
``` \(\qquad\)
\(\qquad\)
－propene－ \(\qquad\)
－butene－ \(\qquad\)
－pentene－ \(\qquad\)
－hexene－
- heptene -
- octene -
- nonene -
- decene -

\(\qquad\) bonds (one or more)
- \(\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2} \sim\) where \(\mathrm{n}=\)
- ethyne (acetylene) -
- propyne -
- butyne -
- pentyne -
- hexyne -
- heptyne -
- octyne - \(\qquad\)
- nonyne - \(\qquad\)
- decyne -

groups
- Groups with ___ less ___ than \(\qquad\)
-

- _ group (__)
- \(\qquad\)

\section*{Naming Alkanes: following the IUPAC rules}
1. Name the parent hydrocarbon.
- Identify the longest continuous chain of carbon atoms.
- Add the suffix -ane to the prefix corresponding to the number of carbon atoms in the chain.
2. Number the atoms in the chain, starting at the end that is closest to an attached side group.
- If each end has an equally close side group, start with the end that is closes to a second attached group
3. Add the names of the alkyl groups.
- In front of the name of the parent hydrocarbon in alphabetical order.
- Use the suffix -yl to show that it is a side group.
- When there is more than one branch of the same alkyl group present, attach the appropriate numerical prefix (di-, tri-, tetra-, etc.) to the name.
- Do this after the names have been put in alphabetical order.
4. Insert the position numbers.
- Identify the location of each alkyl group by using the number of the carbon atom to which it is attached.
5. Punctuate the name: write the name with no spaces, with commas between numbers, and with hyphens between numbers and letters.

\section*{Naming Cycloalkanes: following the IUPAC rules}
* Use the rules for alkane nomenclature with the following exceptions:
1. Name the parent hydrocarbon.
- Count the number of carbon atoms in the ring.
- Add the prefix cyclo- to the name of the corresponding straight-chain alkane.
2. Add the names of the alkyl groups.
3. Number the carbon atoms in the parent hydrocarbon.
- If there are two or more alkyl groups attached to the ring, number the carbon atoms in the ring. - Assign position number one to the alkyl group that comes first in alphabetical order.
\(\circ\) Then, number in the direction that gives the rest of the alkyl groups the lowest numbers possible.
4. Insert position numbers.
5. Punctuate the name.

\section*{Naming Alkanes:}

\section*{ExI. (shoothand notation)}

Exa.

EXS

Drawing Alkanes:
ExI. 3-ethyl-2-methylhexane

\section*{Ex2. 2,2-dimethylbutane}

Ex3. 4-ethyl-3,3,4,5,6-pentamethyl-5-propyloctane

Naming Cycloalkanes:

EXa.

Ex3.

Drawing Cycloalkanes:
Ex1. cycloheptane Ex2. 1,2-dimethylcyclopropane

Ex3. 1-ethyl-2,5-dimethylcycloheptane

\section*{Naming Alkenes: following the IUPAC rules}
1. Name the parent hydrocarbon.
- Identify the longest continuous chain of carbon atoms that contains the double bond.
- Add the suffix -ene to the prefix corresponding to the number of carbon atoms in the chain.
\(\circ\) If there is more than one double bond, modify the suffix (\(2=\)-adiene, \(3=\)-atriene, etc.)
2. Number the atoms in the chain, starting at the end that is closest to a double bond.
- If each end has an equally close double bond, start with the end that is closest to an alkyl group
3. Add the names of the alkyl groups.
- In front of the name of the parent hydrocarbon in alphabetical order.
- Use the suffix -yl to show that it is a side group.
- When there is more than one branch of the same alkyl group present, attach the appropriate numerical prefix (di-, tri-, tetra-, etc.) to the name.
- Do this after the names have been put in alphabetical order.
4. Insert the position numbers.
- Identify the location of each double bond and alkyl group by using the number of the carbon atom to which it is attached.
5. Punctuate the name: write the name with no spaces, with commas between numbers, and with hyphens between numbers and letters.

\section*{Naming Alkenes: \\ EXI. \(-{\underset{1}{1}}_{1}^{1}-c^{\prime}=c^{1}-c_{1}^{1}-c_{1}^{1}-c_{1}^{1}-\)}

\section*{EX2.}

EX3.

Drawing Alkenes:
ExI. 7-methyl-3-octene

Ex2. 1,2-hexadiene

Ex3. 4,4-dimethyl-2-pentene

Naming Alkynes: following the IUPAC rules
1. Name the parent hydrocarbon.
- Identify the longest continuous chain of carbon atoms that contains the triple bond.
- Add the suffix -yne to the prefix corresponding to the number of carbon atoms in the chain.
- If there is more than one triple bond, modify the suffix (\(2=\)-adiyne, \(3=\)-atriyne, etc.)
2. Number the atoms in the chain, starting at the end that is closest to a triple bond.
- If each end has an equally close triple bond, start with the end that is closest to an alkyl group
3. Add the names of the alkyl groups.
- In front of the name of the parent hydrocarbon in alphabetical order.
- Use the suffix \(-y l\) to show that it is a side group.
- When there is more than one branch of the same alkyl group present, attach the appropriate numerical prefix (di-, tri-, tetra-, etc.) to the name.
- Do this after the names have been put in alphabetical order.
4. Insert the position numbers.
- Identify the location of each triple bond and alkyl group by using the number of the carbon atom to which it is attached.
5. Punctuate the name: write the name with no spaces, with commas between numbers, and with hyphens between numbers and letters.

Naming Alkynes:
ExI.

EX2.

Drawing Alkynes:
ExI. 1,4,7-octatriyne

Ex2. 5-ethyl-5-methyl-3-octyne
* Compounds that have but
- As the number of \(\qquad\) atoms in a chemical formula \(\qquad\) , the number of possible isomers \(\qquad\) rapidly.
* They have similar \(\qquad\)
\(\qquad\) have increased melting and boiling points.
* Types of Isomers:
- \(\qquad\)
\(>\) Isomers in which the atoms are bonded together in
\(\qquad\)
\(>\) Ex. Butane \(\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)\) \& 2-methylpropane \(\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)\)
\(\qquad\) of atom bonding is the \(\qquad\)
but the \(\qquad\) of atoms in space is \(\qquad\) .

\section*{> Ex.1: 1,2-dichloroethene}
> Ex.2: 1,2-dichloroethane
- In order for geometric isomers to \(\qquad\) there must be
a \(\qquad\) structure in the molecule to prevent
\(\qquad\) around a bond.
- A molecule can have a geometric isomer \(\qquad\) two carbon atoms in a \(\qquad\) structure each have two
\(\qquad\) groups attached.
\(\qquad\)
\(>\) Isomers that differ \(\qquad\) by the placement
of \(\qquad\) around \(\qquad\) atoms in a
molecule.
\(>\) They are \(\qquad\) images of one another and
\(\qquad\) on one another.
> Simple substances which show optical isomerism exist as two
isomers known as \(\qquad\) .
> Ex. Optical Isomers

\(>\) Ex. Not optical isomers

- Optical isomers can only exist if all \(\qquad\) groups attached to the \(\qquad\) carbon are \(\qquad\) .
\(>\) A molecule is \(\qquad\) if it is not \(\qquad\)
on its \(\qquad\) image.
> A molecule which has \(\qquad\)
is described as chiral.
\(>\) The carbon atom with the \(\qquad\) different groups attached
which causes this lack of symmetry is described as a \(\qquad\) center or as an \(\qquad\) carbon atom.
> Only chiral molecules have \(\qquad\) isomers.
> Ex. Chiral molecule

> Ex. Achiral molecule

- \(\qquad\) Organic Compounds
\(\qquad\) compounds - hydrocarbon containing \(\qquad\)
ring structure
- Most have \(\qquad\)
- Benzene: \(\qquad\)
\(>\) Forms a ring with \(\qquad\) bonds and \(\qquad\) bonds.
> Shorthand notation:
> Can have attached groups:
\(>\) Benzene as an attached group is called a group.
- Ex. Phenylethylene (styrene)
- Ex. 2 benzenes \(\sim\) naphthalene \(\mathrm{C}_{10} \mathrm{H}_{8}\) (mothballs)
\(\qquad\) hydrocarbon compounds
\(\qquad\) : an atom or group of atoms that is responsible for the specific properties of an organic compound. \(>\) The __ within functional groups are often the site of chemical \(\qquad\) .
\(\qquad\) compound
- Substituted by (Cl, Br, F, I) ~ \(\qquad\)
> also called \(\qquad\)
\(>\) Ex.
\(>\) Ex.
\(>\) Ex.
- Substituted by
\(\qquad\) \(\sim\)
\(\qquad\)
\(\qquad\) and \(\qquad\) represents the \(\qquad\) of the hydrocarbon
- Ex. Methanol \(\sim \mathrm{CH}_{3} \mathrm{OH}\)
- Ex. Ethanol \(\sim \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\)
- Ex. Propanol \(\sim \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}\)
\(\qquad\) group also known as a
\(\qquad\)
- Ex. Ethanoic acid (Acetic acid) \(\sim \mathrm{CH}_{3} \mathrm{COOH}\)
- Ex. Butanoic acid \(\sim \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}\)
- Derivatives of
- Categorized as primary, secondary, or tertiary amines depending on the number of \(\qquad\) atoms of the
\(\qquad\) molecule that have been \(\qquad\) .
- \(\qquad\) amine - \(\qquad\) H replaced
- \(\qquad\) amine - \(\qquad\) H replaced - \(\qquad\) amine - \(\qquad\) H replaced
- Ex. Methylamine \(\sim \mathrm{CH}_{3} \mathrm{NH}_{2}\)
- Ex. Ethylmethylamine \(\sim \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NHCH}_{3}\)
- Ex. Trimethylamine \(\sim \mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{NCH}_{3}\)

\section*{Biologicall Compounds}

\section*{- Polymers}
- same molecules bonded in \(\qquad\)
- \(\qquad\) - smaller molecules; polymers are chains of attached
monomers
- polymers are created through \(\qquad\) reactions (the molecules are joined through the removal of \(\mathrm{H}_{2} \mathrm{O}\))
- polymers are broken through \(\qquad\) reactions where \(\mathrm{H}_{2} \mathrm{O}\) is added

\section*{- Carbohydrates (C-H-0)}
- organic compounds with \(\qquad\)
\(\qquad\)

○ \(\qquad\) (simple) and \(\qquad\) (complex)
- \(\qquad\) - simplest sugars (1)
- ex. fructose, glucose

○ \(\qquad\) - 2 simple sugars bonded
- ex. sucrose \(\rightarrow\) table sugar

○ \(\qquad\) - starches \(\rightarrow\) polymers of monosaccharides which
may be broken down into simple sugars in digestion
- provide the organism with a source of \(\qquad\)

\section*{- Lipids (C - H-0)}

0 \(\qquad\)
- not very soluble in \(\mathrm{H}_{2} \mathrm{O}\)
- less \(\qquad\) than carbohydrates
- prevalent in cell membranes due to low \(\mathrm{H}_{2} \mathrm{O}\) solubility
- excellent energy storage

○ fatty acids \(\rightarrow\) contain \(\qquad\)
- _ = single bonds
-
- \(\qquad\) = several double bonds

\section*{Saturated fatty acid}
\[
\mathrm{c}_{\mathrm{C}} \mathrm{c}_{\mathrm{C}} \mathrm{C}_{\mathrm{C}} \mathrm{C}_{\mathrm{C}} \mathrm{C}_{\mathrm{C}}-\mathrm{c}_{\mathrm{C}} \mathrm{C}_{\mathrm{OH}}^{0}
\]

Unsaturated fatty acid
\(\sim_{C O C O C O C O C O C O}^{O}\)
- plant lipids are \(\qquad\) (liquid/solid)
- many are unsaturated but can be \(\qquad\)
(add an H to make solid)
- animal lipids are fats (solid)
- generally \(\qquad\)

\section*{- Proteins (C-H-O-N)}
- polymers of \(\qquad\) that create muscles, tendons, hair,
fingernails and \(\qquad\)
- amino acids have a \(\qquad\) group \((\mathrm{COOH})\) and an \(\qquad\)
group \(\left(-\mathrm{NH}_{2}\right)\)

○ \(\qquad\) link the amino acids together
- these bonds form between amino and carboxyl groups from neighboring amino acids

- polymers of \(\qquad\) (sugar, phosphate and N - base)
- DNA
- found in \(\qquad\) of cells
- codes for protein synthesis (genetic info)
- \(\qquad\) structure
- RNA (ribonucleic acid)
- made from DNA instructions
- carries the code of DNA
- \(\qquad\) structure

\(\qquad\)
- Carbon \& Hydrocarbons (Chapter 20)
\(\checkmark\) carbon / allotropes
\(\checkmark\) vocab-prefixes / suffixes for naming
\(\checkmark\) structural formulas (must be able to draw compound \& name)
\(\checkmark\) isomers-structural / geometric / optical
\(\checkmark\) aliphatic hydrocarbons - alkanes / alkenes /alkynes
\(\checkmark\) aromatic hydrocarbons / benzene ring
- Other Organic Compounds (Chapter 21)
\(\checkmark\) functional groups
\(\checkmark\) alkyl halides / alcohols / carboxylic acids / amines
(functional group for each / draw compound \& name)
- Biological Compounds```

