## Organic Chemistry

| Organic Compounds                                                           |  |
|-----------------------------------------------------------------------------|--|
| ✤ compounds that contain                                                    |  |
| ✤ of all compounds                                                          |  |
| originally associated with now most are                                     |  |
|                                                                             |  |
| Reasons for so many types:                                                  |  |
| <ul> <li>Carbon can form bonds to different atoms because it has</li> </ul> |  |
| valence e- and needs more for stability                                     |  |
| <ul> <li>It can form</li> </ul>                                             |  |
| <ul> <li>Can have a large number of in one compound</li> </ul>              |  |
| • C can form:                                                               |  |
| ( shared e-) bonds                                                          |  |
| ( shared e-) bonds                                                          |  |
| ( shared e-) bonds                                                          |  |

Carbon bonds with many different elements:



pentane – \_\_\_\_\_

hexane – \_\_\_\_\_

heptane – \_\_\_\_\_

octane – \_\_\_\_\_

nonane – \_\_\_\_\_

decane – \_\_\_\_\_

|   | )                                   |
|---|-------------------------------------|
| 0 | one or more bonds                   |
| 0 | $C_nH_{2n} \sim \text{where } n = $ |
|   | <ul> <li>ethene –</li> </ul>        |
|   |                                     |
|   |                                     |
|   |                                     |
|   | <ul> <li>propene –</li> </ul>       |
|   |                                     |
|   |                                     |
|   | <ul> <li>butene –</li> </ul>        |
|   |                                     |

pentene – \_\_\_\_\_

hexene – \_\_\_\_\_

heptene –\_\_\_\_\_

octene –\_\_\_\_\_

nonene –\_\_\_\_\_

decene –

> \_\_\_\_\_\_ (\_\_\_\_\_\_)

• \_\_\_\_\_ bonds (one or more)

 $\circ$  C<sub>n</sub>H<sub>2n-2</sub> ~ where n = \_\_\_\_\_

ethyne (acetylene) – \_\_\_\_\_

propyne – \_\_\_\_\_

butyne – \_\_\_\_\_

pentyne – \_\_\_\_\_

hexyne –\_\_\_\_\_



#### Naming Alkanes: following the IUPAC rules

- 1. Name the parent hydrocarbon.
  - Identify the longest continuous chain of carbon atoms.
    - Add the suffix –*ane* to the prefix corresponding to the number of carbon atoms in the chain.
- 2. Number the atoms in the chain, starting at the end that is closest to an attached side group.
- If each end has an equally close side group, start with the end that is closes to a second attached group
- 3. Add the names of the alkyl groups.
  - In front of the name of the parent hydrocarbon in alphabetical order.
  - Use the suffix –*yl* to show that it is a side group.
  - When there is more than one branch of the same alkyl group present, attach the appropriate numerical prefix (di-, tri-, tetra-, etc.) to the name.
    - $\circ$  Do this after the names have been put in alphabetical order.
- 4. Insert the position numbers.
  - Identify the location of each alkyl group by using the number of the carbon atom to which it is attached.
- 5. Punctuate the name: write the name with no spaces, with commas between numbers, and with hyphens between numbers and letters.

#### Naming Cycloalkanes: following the IUPAC rules

- \* Use the rules for alkane nomenclature with the following exceptions:
  - 1. Name the parent hydrocarbon.
    - Count the number of carbon atoms in the ring.
    - Add the prefix *cyclo* to the name of the corresponding straight-chain alkane.
  - 2. Add the names of the alkyl groups.
  - 3. Number the carbon atoms in the parent hydrocarbon.
    - If there are two or more alkyl groups attached to the ring, number the carbon atoms in the ring.
       Assign position number one to the alkyl group that comes first in alphabetical order.
      - Then, number in the direction that gives the rest of the alkyl groups the lowest numbers possible.
  - 4. Insert position numbers.
  - 5. Punctuate the name.

# Naming Alkanes:

EXI. (shorthand notation)





Drawing Alkanes:

Ex 1. 3-ethyl-2-methylhexane

## Ex 2. 2,2-dimethylbutane

## Ex 3. 4-ethyl-3,3,4,5,6-pentamethyl-5-propyloctane

## Naming Cycloalkanes:







 $\frac{Drawing Cycloalkanes:}{E \times 1.}$  cycloheptane  $\frac{E \times 2.}{E \times 2.}$  1,2-dimethylcyclopropane

## Ex 3. 1-ethyl-2,5-dimethylcycloheptane

#### Naming Alkenes: following the IUPAC rules

- 1. Name the parent hydrocarbon.
  - Identify the longest continuous chain of carbon atoms that *contains* the double bond.
     Add the suffix -ene to the prefix corresponding to the number of carbon atoms in the chain.
     If there is more than one double bond, modify the suffix (2 = -adiene, 3 = -atriene, etc.)
- 2. Number the atoms in the chain, starting at the end that is closest to a double bond.
  - If each end has an equally close double bond, start with the end that is closest to an alkyl group
- 3. Add the names of the alkyl groups.
  - In front of the name of the parent hydrocarbon in alphabetical order.
  - Use the suffix –*yl* to show that it is a side group.
  - When there is more than one branch of the same alkyl group present, attach the appropriate numerical prefix (di-, tri-, tetra-, etc.) to the name.
    - $\,\circ$  Do this after the names have been put in alphabetical order.
- 4. Insert the position numbers.
  - Identify the location of each double bond and alkyl group by using the number of the carbon atom to which it is attached.
- 5. Punctuate the name: write the name with no spaces, with commas between numbers, and with hyphens between numbers and letters.

# $\frac{\text{Naming Alkenes:}}{\text{EXI.}} - \dot{\zeta} - \dot{\zeta} = \dot{\zeta} - \dot{$



$$EX3.$$
  
 $-C = C - C - C = C - C$ 

## Drawing Alkenes: Ex 1. 7-methyl-3-octene

## Ex 2. 1,2-hexadiene

## Ex 3. 4,4-dimethyl-2-pentene

#### Naming Alkynes: following the IUPAC rules

- 1. Name the parent hydrocarbon.
  - Identify the longest continuous chain of carbon atoms that *contains* the triple bond.
    - Add the suffix –yne to the prefix corresponding to the number of carbon atoms in the chain.
  - $\circ$  If there is more than one triple bond, modify the suffix (2 = -*adiyne*, 3 = -*atriyne*, etc.)
- 2. Number the atoms in the chain, starting at the end that is closest to a triple bond.
  - If each end has an equally close triple bond, start with the end that is closest to an alkyl group
- 3. Add the names of the alkyl groups.
  - In front of the name of the parent hydrocarbon in alphabetical order.
  - Use the suffix –*yl* to show that it is a side group.
  - When there is more than one branch of the same alkyl group present, attach the appropriate numerical prefix (di-, tri-, tetra-, etc.) to the name.
    - $\circ$  Do this after the names have been put in alphabetical order.
- 4. Insert the position numbers.
  - Identify the location of each triple bond and alkyl group by using the number of the carbon atom to which it is attached.
- 5. Punctuate the name: write the name with no spaces, with commas between numbers, and with hyphens between numbers and letters.

# Naming Alkynes:

 $\underbrace{EXI.}{-C \equiv C - \dot{C} - \dot{C}$ 





Drawing Alkynes: <u>Ex 1.</u> 1,4,7-octatriyne

Ex 2. 5-ethyl-5-methyl-3-octyne

| <ul> <li>Compounds that have</li> </ul>                                                                                |  |
|------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>As the number of atoms in a chemical formula</li> </ul>                                                       |  |
| the number of possible isomers rapidly.                                                                                |  |
| They have similar                                                                                                      |  |
|                                                                                                                        |  |
| Types of Isomers:                                                                                                      |  |
| •                                                                                                                      |  |
| Isomers in which the atoms are bonded together in                                                                      |  |
|                                                                                                                        |  |
| $\blacktriangleright$ Ex. Butane (C <sub>4</sub> H <sub>10</sub> ) & 2-methylpropane (C <sub>4</sub> H <sub>10</sub> ) |  |

\_\_\_\_\_

•

Isomers in which the \_\_\_\_\_ of atom bonding is the \_\_\_\_\_,

but the \_\_\_\_\_\_ of atoms in space is \_\_\_\_\_\_.

➢ <u>Ex.1</u>: 1,2-dichloroethene

#### ➢ <u>Ex.2</u>: 1,2-dichloroethane

In order for geometric isomers to \_\_\_\_\_, there must be

a \_\_\_\_\_\_ structure in the molecule to prevent

\_\_\_\_\_ around a bond.

#### ➢ <u>Ex.3</u>: Chloroethene

| • A molecule can have a geometric isomer                    | two                                             |
|-------------------------------------------------------------|-------------------------------------------------|
| carbon atoms in a structure each have two                   |                                                 |
| groups attached.                                            |                                                 |
| •                                                           |                                                 |
| Isomers that differ by the placem                           | ent                                             |
| of around atoms in a                                        |                                                 |
| molecule.                                                   |                                                 |
| They are images of one another and                          |                                                 |
| on one another.                                             |                                                 |
| Simple substances which show optical isomerism exist as two |                                                 |
| isomers known as                                            |                                                 |
| <u>Ex.</u> Optical Isomers                                  |                                                 |
| $A \qquad A \qquad H_3CH_2C \qquad CH_4$                    | <sub>2</sub> СН <sub>3</sub><br>СН <sub>3</sub> |
| D D H30 HO OH                                               | -                                               |

| $\blacktriangleright$ <u>Ex</u> . Not optical isomers                    |                                                                                                         |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| A A H <sub>3</sub> C                                                     | H <sub>a</sub> C CH <sub>a</sub> CH <sub>3</sub>                                                        |
| $B - C - D = D - C - B = H_3C$                                           | $H_{a}C \qquad CH_{a}CH_{3}$ $/ C \qquad H_{a}CH_{3}$ $/ C \qquad H_{a}CH_{3}$ $/ C \qquad H_{a}CH_{3}$ |
| mirror                                                                   | · · · ·                                                                                                 |
| $\circ$ Optical isomers can only exist if a                              | all groups attached                                                                                     |
| to the carbon are                                                        |                                                                                                         |
| •                                                                        |                                                                                                         |
| A molecule is if it is no                                                | t                                                                                                       |
| on its image.                                                            |                                                                                                         |
| A molecule which has                                                     |                                                                                                         |
| is described as chiral.                                                  |                                                                                                         |
| The carbon atom with the                                                 | different groups attached                                                                               |
| which causes this lack of symmetry is o                                  | lescribed as a                                                                                          |
| center or as an                                                          | carbon atom.                                                                                            |
| Only chiral molecules have                                               | isomers.                                                                                                |
| > Ex. Chiral molecule<br>CI<br>I<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C |                                                                                                         |
| F C F                                                                    |                                                                                                         |

> Ex. Achiral molecule





Shorthand notation:

Can have attached groups:

#### Benzene as an attached group is called a \_\_\_\_\_ group.

• Ex. Phenylethylene (styrene)

 $\circ$  Ex. 2 benzenes ~ naphthalene C<sub>10</sub>H<sub>8</sub>(mothballs)

hydrocarbon compounds
 \_\_\_\_\_\_: an atom or group of atoms that is responsible for the specific properties of an organic compound.
 The \_\_\_\_\_\_ within functional groups are often the site of chemical \_\_\_\_\_\_.

| • | is replaced with a different element |
|---|--------------------------------------|
|   | Results in a more compound           |
| • | Substituted by (Cl, Br, F, I) ~      |

also called \_\_\_\_\_\_

≻ Ex.

≻ Ex.

≻ Ex.

Substituted by \_\_\_\_\_\_

▶ \_\_\_\_\_~~\_\_\_\_

• Where -OH (\_\_\_\_\_\_) represents the \_\_\_\_\_\_

and \_\_\_\_\_ represents the \_\_\_\_\_ of the hydrocarbon

■ Ex. Methanol ~ CH<sub>3</sub>OH

• Ex. Ethanol ~  $CH_3CH_2OH \rightarrow C_2H_5OH$ 

• Ex. Propanol ~  $CH_3CH_2CH_2OH \rightarrow C_3H_7OH$ 

• COOH is called a \_\_\_\_\_ group also known as a

▶ \_\_\_\_\_

• Ex. Ethanoic acid (Acetic acid) ~ CH<sub>3</sub>COOH

• Ex. Butanoic acid ~ C<sub>3</sub>H<sub>7</sub>COOH

> \_\_\_\_\_

Derivatives of \_\_\_\_\_\_

Categorized as primary, secondary, or tertiary amines

depending on the number of \_\_\_\_\_\_ atoms of the

\_\_\_\_\_ molecule that have been \_\_\_\_\_\_.

- \_\_\_\_\_ amine \_\_\_\_\_ H replaced
- \_\_\_\_\_ amine \_\_\_\_\_ H replaced
- \_\_\_\_\_ amine \_\_\_\_\_ H replaced

 $\circ$  Ex. Methylamine ~CH<sub>3</sub>NH<sub>2</sub>

 $\circ$  Ex. Ethylmethylamine ~CH<sub>3</sub>CH<sub>2</sub>NHCH<sub>3</sub>

 $\circ$  Ex. Trimethylamine ~ CH<sub>3</sub>CH<sub>3</sub>NCH<sub>3</sub>

## **Biological Compounds**

• Polymers

0 \_\_\_\_\_

\_\_\_\_\_ – smaller molecules; polymers are chains of attached

#### monomers

polymers are created through \_\_\_\_\_\_ reactions (the

molecules are joined through the removal of H<sub>2</sub>O)

 $\circ$  polymers are broken through \_\_\_\_\_reactions where  $H_2O$ 

is added

#### • Carbohydrates (C - H - O)

- - ex. sucrose  $\rightarrow$  table sugar

may be broken down into simple sugars in digestion

provide the organism with a source of \_\_\_\_\_\_

#### • Lipids (C – H – O)

- 0 \_\_\_\_\_
- $\circ$  not very soluble in H<sub>2</sub>O
- less \_\_\_\_\_ than carbohydrates
- prevalent in cell membranes due to low H<sub>2</sub>O solubility
- excellent energy storage
- $\circ$  fatty acids  $\rightarrow$  contain \_\_\_\_\_
  - single bonds
  - = \_\_\_\_\_ = 1 double bond
  - several double bonds

Fatty acid structure Saturated fatty acid с<sub>с</sub>с<sub>с</sub>с<sub>с</sub>с<sub>с</sub>с<sub>с</sub>с<sub>с</sub>с<sub>с</sub>о Unsaturated fatty acid 

18 - 5

Ο

plant lipids are \_\_\_\_\_ (liquid/solid) 

many are unsaturated but can be \_\_\_\_\_

(add an H to make solid)

- animal lipids are fats (solid)
  - generally \_\_\_\_\_

#### **Proteins (C – H – O – N)** •

polymers of \_\_\_\_\_\_ that create muscles, tendons, hair,

fingernails and

amino acids have a \_\_\_\_\_\_ group (COOH) and an \_\_\_\_\_ 0

```
group (- NH<sub>2</sub>)
```

amino acids

- \_\_\_\_\_ link the amino acids together Ο
  - these bonds form between amino and carboxyl groups from neighboring



- Nucleic Acids (C H O N)
  - polymers of \_\_\_\_\_\_ (sugar, phosphate and N base)

o DNA

- found in \_\_\_\_\_ of cells
- codes for protein synthesis (genetic info)
- \_\_\_\_\_\_structure
- RNA (ribonucleic acid)
  - made from DNA instructions
  - carries the code of DNA
  - \_\_\_\_\_\_ structure



#### • Carbon & Hydrocarbons (Chapter 20)

- ✓ carbon / allotropes
- ✓ vocab prefixes / suffixes for naming
- ✓ structural formulas (must be able to draw compound & name)
- ✓ isomers structural / geometric / optical
- ✓ aliphatic hydrocarbons alkanes / alkenes /alkynes
- ✓ aromatic hydrocarbons / benzene ring

#### • Other Organic Compounds (Chapter 21)

- ✓ functional groups
- ✓ alkyl halides / alcohols / carboxylic acids / amines (functional group for each / draw compound & name)
- Biological Compounds