The Quadratic Formula

$$
-b \pm \frac{\sqrt{(b)^{2}-4 a c}}{2 a}
$$

- The values " a " " b " and " c " are taken from the standard form of a quadratic $\rightarrow a x^{2}+b x+c$
- The easiest way to solve " $a x^{2}+b x+c=0$ " for the value of x is to factor the quadratic, set each factor equal to zero, and then solve each x . But quadratics are not always factorable. This is when we can instead use the quadratic formula to solve for x . We can use the quadratic formula to solve any quadratic for x.
- Every single term must be on the same side of the equals sign (the other side should ONLY had a 0) so that " a " " b " and " " " are easily identifiable.

Use the Quadratic Formula to solve the following quadratic equations for x .

Ex 1) $x^{2}+2 x-8=0$
Ex 2) $2 x^{2}-2 x-3=0$

Ex 4) $x^{2}+9 x-60=-8$

The Discriminant of a Quadratic

Discriminant of a quadratic: this tells us how many solutions we will end up with. The discriminant is $\sqrt{b^{2}-4 a c}$, better known as the "square root" part of the quadratic formula

If what is inside of	Ex) Use the quadratic equation to solve: $x^{2}+6 x+5=0$
the square root is	
POSITIVE:	
$b^{2}-4 a c>0$	
We will have 2 solutions	

