Name: \qquad
May Choice Board - Algebra
DUE: MAY

Directions: You must do 2 assignments from this page. Each is worth 50 points and together, add up to a test grade for the month. Answer them on a separate sheet of paper showing all work and attach the sheet to both assignments.

Do page 497	Write the rules for Factoring binomials that are perfect squares. Show three examples	Explain the difference in solving: $x^{2}-5 x+6 \text { and } x^{2}+5 x+6$ BE VERY SPECIFIC on numbers, signs.
What does it mean to be non-factorable? SHOW TWO trinomial EXAMPLES and explain for each example why it is nonfactorable. Then show TWO binomial examples and explain the same.	MISTAKES: Read the problem then explain how you would help them correct this issue. Then solve. 1. $2 x\left(x^{3}-5 x^{2}+6 x\right)$ is completely factored. 2. $2 x^{2}-200$ is completely factored 3. $3 x(x-4)+4(x+4)$ can be rewritten as $(3 x+4)(x-4)$ 4. To solve $3 x^{2}-9$, I find the square root of both numbers first.	Skim the book introductions and develop 5 reasons why you should learn Chapter 7.
What is similar in solving the following:? Then solve. 1. $-x^{2}-5 x-6$ 2. $-2 X y^{2}+16 X Y-32 y$ 3. $3 x^{5}-12 x^{3}$ 4. $4 x^{3}+8 x^{2}+4 x$ 5. $4 x^{4}-100$	Vocabulary Definitions 1. Range 2. Domain 3. Function 4. Quadratic 5. Parabola 6. Factoring 7. Perfect square 8. Trinomial 9. GCF 10. Prime factorization	Look ahead to Chapter 8: 1. What is a quadratic equation? 2. What does a quadratic graph look like? Is called? 3. Show a vertex with a minimum point. 4. Show a vertex with a maximum point. 5. FILL IN THE BLANK: The zeros of a function are the same as the \qquad of a function.

