\qquad
\qquad

3-3 Study Guide and Intervention
 Rate of Change and Slope

Rate of Change The rate of change tells, on average, how a quantity is changing over time.

Example POPULATION The graph shows the population growth in China.

a. Find the rates of change for 1950-1975 and for 2000-2025.

$$
\begin{aligned}
1950-1975: \frac{\text { change in population }}{\text { change in time }} & =\frac{0.93-0.55}{1975-1950} \\
& =\frac{0.38}{25} \text { or } 0.0152 \\
2000-2025: \frac{\text { change in population }}{\text { change in time }} & =\frac{1.45-1.27}{2025-2000} \\
& =\frac{0.18}{25} \text { or } 0.0072
\end{aligned}
$$

Source: United Nations Population Division

b. Explain the meaning of the rate of change in each case.

From 1950-1975, the growth was 0.0152 billion per year, or 15.2 million per year. From 2000-2025, the growth is expected to be 0.0072 billion per year, or 7.2 million per year.

c. How are the different rates of change shown on the graph?

There is a greater vertical change for 1950-1975 than for 2000-2025. Therefore, the section of the graph for 1950-1975 has a steeper slope.

Exercises

1. LONGEVITY The graph shows the predicted life expectancy for men and women born in a given year.
a. Find the rates of change for women from 2000-2025 and 2025-2050.
b. Find the rates of change for men from 2000-2025 and 2025-2050.
c. Explain the meaning of your results in Exercises 1 and 2.
d. What pattern do you see in the increase with each 25 -year period?

Source: USA TODAY
e. Make a prediction for the life expectancy for 2050-2075. Explain how you arrived at your prediction.
\qquad
\qquad
\qquad

3-3 Study Guide and Intervention (continued)
 Rate of Change and Slope

Find Slope The slope of a line is the ratio of change in the y-coordinates (rise) to the change in the x-coordinates (run) as you move in the positive direction.

Slope of a Line	$m=\frac{\text { rise }}{\text { run }}$ or $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$, where $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are the coordinates of any two points on a nonvertical line

Example 1 Find the slope of the

 line that passes through $(-3,5)$ and $(4,-2)$.$$
\begin{aligned}
& \text { Let }(-3,5)=\left(x_{1}, y_{1}\right) \text { and } \\
& \begin{array}{ll}
(4,-2)=\left(x_{2}, y_{2}\right) . \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \text { Slope formula } \\
\quad=\frac{-2-5}{4-(-3)} & y_{2}=-2, y_{1}=5, x_{2}=4, x_{1}=-3 \\
& =\frac{-7}{7} \\
\quad \text { Simplify. }
\end{array}
\end{aligned}
$$

Example 2 Find the value of r so that the line through $(10, r)$ and $(3,4)$ has a slope of $-\frac{2}{7}$.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & & \text { Slope formula } \\
-\frac{2}{7} & =\frac{4-r}{3-10} & & m=-\frac{2}{7}, y_{2}=4, y_{1}=r, x_{2}=3, x_{1}=10 \\
-\frac{2}{7} & =\frac{4-r}{-7} & & \text { Simplify. } \\
-2(-7) & =7(4-r) & & \text { Cross multiply. } \\
14 & =28-7 r & & \text { Distributive Property } \\
-14 & =-7 r & & \text { Subtract } 28 \text { from each side. } \\
2 & =r & & \text { Divide each side by }-7 .
\end{aligned}
$$

Exercises

Find the slope of the line that passes through each pair of points.

1. $(4,9),(1,6)$
2. $(-4,-1),(-2,-5)$
3. $(-4,-1),(-4,-5)$
4. $(2,1),(8,9)$
5. $(14,-8),(7,-6)$
6. $(4,-3),(8,-3)$
7. $(1,-2),(6,2)$
8. $(2,5),(6,2)$
9. $(4,3.5),(-4,3.5)$

Find the value of r so the line that passes through each pair of points has the given slope.
10. $(6,8),(r,-2), m=1$
11. $(-1,-3),(7, r), m=\frac{3}{4}$
12. $(2,8),(r,-4) m=-3$
13. $(7,-5),(6, r), m=0$
14. $(r, 4),(7,1), m=\frac{3}{4}$
15. $(7,5),(r, 9), m=6$

