Algebra 2/Trig Honors Exponential and Logarithmic Functions

Name_____

Write each in exponential form.

1.
$$\log_3 81 = 4$$

2.
$$\log_e \frac{1}{e^4} = -4$$

Write each in logarithmic form.

3.
$$2^5 = 32$$

4.
$$\left(\frac{1}{3}\right)^{-3} = 27$$

Solve.

5.
$$\log_5 25 = x$$

6.
$$\log_x 64 = 2$$

7.
$$\log_2 x = -6$$

8.
$$\log_5 \sqrt[3]{\frac{1}{25}} = x$$

9.
$$\log_9 x = -\frac{3}{2}$$

10.
$$\log_x \frac{9}{16} = -2$$

$$11. \qquad \left(\frac{1}{4}\right)^x = 64$$

12.
$$9^{2x} = 27^{3-4x}$$

13.
$$8(3^{6-x})=40$$

14.
$$\log_2 x^2 = \log_2(3x + 10)$$

15.
$$\log_2 \sqrt{x+1} = 3$$

16.
$$\log_3(3x - 8) = \log_3 4x$$

17.
$$\log_3 x - \log_3 (x - 5) = \log_3 6$$

18.
$$\log_7(x^2 + 7) = \frac{2}{3}\log_7 64$$

19.
$$\log_6(x+1) + \log_6 x = 1$$

20.
$$e^{2x} = e^{x^2-8}$$

21.
$$e^{2x} + 9e^x - 36 = 0$$

22.
$$\log_2(3x+5) - \log_2(x-5) = \log_2 8$$

23. $2 \log_3 x - \log_3 (x - 2) = 2$

24.
$$\log 2 + \log(3x + 8) - 1 = \log(x + 1)$$

25. $\log_2(4x^2 - 4) - 5 = \log_2 3$

26. Use the properties of logs to expand the logarithm. $log_4(x^3y^5)$

27. Use the properties of logs to condense into a single logarithm. $3\log_2 x + \log_2 5 - \log_2 6$

28. A total of \$3,000 is invested at an annual interest rate of 4.5%. Find the balance after 10 years if it is compounded a) quarterly, b) monthly and c) continuously.

Use the formulas
$$A = P \left(1 + \frac{r}{n} \right)^{nt}$$
 and $A = Pe^{rt}$

Graph each function. State the domain and the asymptote.

29.
$$f(x) = -2^{-x-3} + 5$$

30.
$$g(x) = -\log_2(x-4) + 2$$

Domain: _____

Domain: _____

Asymptote: _____

Asymptote: _____

31. Find the inverse of $g(x) = 3^{x-2} + 4$. Graph <u>both</u> functions. $g^{-1}(x) =$

32. Find the inverse of $h(x) = 2^{x+3} - 3$. Graph both functions. $h^{-1}(x) =$

