3-1 Study Guide and Intervention

Graphing Linear Equations

Identify Linear Equations and Intercepts A **linear equation** is an equation that can be written in the form Ax + By = C. This is called the **standard form** of a linear equation.

Standard Form of a Linear Equation

Ax + By = C, where $A \ge 0$, A and B are not both zero, and A, B, and C are integers with a greatest common factor of 1

Example 1 Determine whether y = 6 - 3x is a linear equation. Write the equation in standard form.

First rewrite the equation so both variables are on the same side of the equation.

$$y = 6 - 3x$$

Original equation

$$y + 3x = 6 - 3x + 3x$$

Add 3x to each side.

$$3x + y = 6$$

Simplify.

The equation is now in standard form, with A=3, B=1 and C=6. This is a linear equation.

Example 2 Determine whether 3xy + y = 4 + 2x is a linear equation. Write the equation in standard form.

Since the term 3xy has two variables, the equation cannot be written in the form Ax + By = C. Therefore, this is not a linear equation.

Lesson 3-1

Determine whether each equation is a linear equation. Write yes or no. If yes, write the equation in standard form.

1.
$$2x = 4y$$

2.
$$6 + y = 8$$

3.
$$4x - 2y = -1$$

4.
$$3xy + 8 = 4y$$

5.
$$3x - 4 = 12$$

6.
$$y = x^2 + 7$$

7.
$$y - 4x = 9$$

8.
$$x + 8 = 0$$

9.
$$-2x + 3 = 4y$$

10.
$$2 + \frac{1}{2}x = y$$

11.
$$\frac{1}{4}y = 12 - 4x$$

12.
$$3xy - y = 8$$

13.
$$6x + 4y - 3 = 0$$

14.
$$yx - 2 = 8$$

15.
$$6x - 2y = 8 + y$$

16.
$$\frac{1}{4}x - 12y = 1$$

17.
$$3 + x + x^2 = 0$$

18.
$$x^2 = 2xy$$

Study Guide and Intervention (continued) 3-1

Graphing Linear Equations

Graph Linear Equations The graph of a linear equations represents all the solutions of the equation. An x-coordinate of the point at which a graph of an equation crosses the x-axis in an x-intercept. A y-coordinate of the point at which a graph crosses the y-axis is called a y-intercept.

Example 1 Graph 3x + 2y = 6by using the x- and y-intercepts.

To find the *x*-intercept, let y = 0 and solve for x. The x-intercept is 2. The graph intersects the x-axis at (2, 0).

To find the *y*-intercept, let x = 0 and solve for γ .

The *y*-intercept is 3. The graph intersects the ν -axis at (0, 3).

Plot the points (2, 0) and (0, 3) and draw the line through them.

Example 2 Graph y - 2x = 1 by making a table.

Solve the equation for γ .

$$\begin{array}{ccc} y-2x=1 & & \text{Original equation} \\ y-2x+2x=1+2x & & \text{Add 2x to each side.} \\ y=2x+1 & & \text{Simplify.} \end{array}$$

Select five values for the domain and make a table. Then graph the ordered pairs and draw a line through the points.

х	2x + 1	у	(x, y)
-2	2(-2) + 1	-3	(-2, -3)
-1	2(-1) + 1	-1	(-1, -1)
0	2(0) + 1	1	(0, 1)
1	2(1) + 1	3	(1, 3)
2	2(2) + 1	5	(2, 5)

Exercises

Graph each equation by using the x- and y-intercepts.

1.
$$2x + y = -2$$

2.
$$3x - 6y = -3$$

$$3. -2x + y = -2$$

Graph each equation by making a table.

4.
$$y = 2x$$

5.
$$x - y = -1$$

6.
$$x + 2y = 4$$

