Geometry Final (Chapters 6, 7, 8, and Circles (10 and 12)

Chapter 6: Quadrilaterals (6.1-6.5)

- Definitions:
- Quadrilateral- a four sided figure.
- Trapezoid-A quadrilateral with exactly one pair of parallel sides.
- Isosceles trapezoid-A trapezoid with nonparallel opposite sides that are congruent.
- Parallelogram-A quadrilateral with both pairs of opposite sides parallel.
- Rectangle- Parallelogram with 4 right angles.
- Rhombus- Parallelogram with 4 congruent sides.
- Square- Parallelogram with 4 right angles and 4 congruent sides.
- Kite- a quadrilateral with two pairs of adjacent sides that are congruent and no opposite sides congruent.
- Bases of a Trapezoid- The parallel sides of a trapezoid.
- Base angles of a Trapezoid- two angles that share a base.
- Legs of a Trapezoid - the nonparallel sides of a trapezoid.
- 5 ways to prove that a quadrilateral is a parallelogram
- Show both pairs of opposite sides congruent
- Show both pairs of opposite angles congruent
- Show both pairs of opposite sides are parallel (By definition)
- Show one pair of opposite sides both parallel and congruent
- Show diagonals bisect each other
- Quadrilateral Rules
- Properties of Parallelograms see above
- Each diagonal bisects two angles of the rhombus/square.
- The diagonals of a rhombus/square/kite are perpendicular.
- The diagonals of a rectangle/square/ isosceles trapezoid are congruent.
- The base angles of an isosceles trapezoid are congruent.
- Solving for side lengths and angles within quadrilaterals using quadrilateral rules
- Midsegment of a trapezoid (In section 6.7)
- Don't worry about the most precise name of quadrilateral

Chapter 7: Similarity (7.1-7.5)

- Definitions:
- Ratio-a comparison of two quantities by division.
- Proportion-an equation that states that two ratios are equal.
- In the statement $\frac{a}{b}=\frac{c}{d}$
- b and c are the means.
- a and d are the extremes.
- Similar-Two figures that have the same shape but not necessarily the same size.
- Similar Polygons-two polygons with corresponding angles congruent and corresponding sides are proportional.
- Solving proportions/Ratios
- Three ways to prove triangles similar
- AA Similarity (\sim), SSS Similarity (\sim), SAS Similarity (\sim)
- Definition of Similar
- Corresponding Angles are congruent and corresponding sides are proportional
- Geometric Mean- answers should be in simplest radical form
- Finding side lengths when given similar figures (Doesn't have to just be triangles)
- Right Triangle Similarity - answers should be in simplest radical form

Chapter 8: Right Triangles and Trigonometry (8.1-8.5)

- Definitions
- Angle of Elevation- the angle formed by a horizontal line and the line of sight to an object above the horizontal line.
- Angle of Depression- the angle formed by a horizontal line and the line of sight to an object below the horizontal line.
- Pythagorean Theorem- $a^{2}+b^{2}=c^{2}$ - answers in simplest radical form
- Classify as acute, right, or obtuse
- $a^{2}+b^{2}>c^{2}$-Acute
- $a^{2}+b^{2}=c^{2}$-Right
- $a^{2}+b^{2}<c^{2}$-Obtuse
- 45-45-90/30-60-90 Triangles

- SOHCAHTOA meaning
- Sine(Sin), Opposite, Hypotenuse
- Cosine (Cos), Adjacent, Hypotenuse
- Tangent (Tan), Opposite, Adjacent
- Solving for triangle side lengths using SOHCAHTOA

Chapter 10/12: Circles (10.6, 10.7, 12.1-12.4)

- Definitions
- Circle- a set of all points equidistant from a given point
- Radius- a segment that has one endpoint at the center and the other endpoint on the circle.
- Diameter- a segment that contains the center of a circle and has both endpoints on the circle.
- Central Angle- an angle whose vertex is the center of the circle
- Arc- part of a circle
- Minor Arc- an arc smaller than 180 degrees
- Semicircle- half of a circle
- Major Arc-an arc greater than 180 degrees
- Tangent- a line in the plane of the circle that intersects the circle at exactly one point.
- Point of Tangency- point where a circle and a tangent intersect
- Chord- a segment whose endpoints are on a circle
- Inscribed Angle- an angle whose sides are chords and whose vertex is on the circle
- Intercepted Arc - the arc formed by the endpoints of the inscribed angle.
- Secant- a line that intersects a circle at two points.
- Classify parts of a circle
- Area/Circumference Formulas
- $\mathrm{C}=\pi \mathrm{d}$ or $\mathrm{C}=2 \pi \mathrm{r}$
- Length of $\widehat{A B}=\frac{m \widehat{A B}}{360} \cdot 2 \pi r$
- Area of a Circle $=\pi r^{2}$
- Area of a Sector $=\frac{m \widehat{A B}}{360} \cdot \pi r^{2}$
- Area of a Segment $=\frac{m \widehat{A B}}{360} \cdot \pi r^{2}-\frac{1}{2} b h$
- Tangent Lines with the radius of a circle create right angles
- Inscribed Angles/Intercepted Arcs- The measure of an inscribed angle is half the measure of the intercepted arc.
- Find arcs and angles
- Intersect inside a circle is half the sum of the measures of the intercepted arcs. $m<$ $1=\frac{1}{2}(x+y)$
- Intersect outside the circle is half the difference of the measures of the intercepted arcs. $m<1=\frac{1}{2}(x-y)$
- Find segment lengths
- Two chords $a \cdot b=c \cdot d$
- Two secants $w(w+x)=y(y+z)$
- A secant and a tangent $y(y+z)=t^{2}$

